Consistency and fluctuations for stochastic gradient Langevin dynamics Consistency and fluctuations for stochastic gradient Langevin dynamics

نویسندگان

  • Yee Whye Teh
  • Alexandre H. Thiery
  • Sebastian J. Vollmer
چکیده

Applying standard Markov chain Monte Carlo (MCMC) algorithms to large data sets is computationally expensive. Both the calculation of the acceptance probability and the creation of informed proposals usually require an iteration through the whole data set. The recently proposed stochastic gradient Langevin dynamics (SGLD) method circumvents this problem by generating proposals which are only based on a subset of the data, by skipping the accept-reject step and by using decreasing step-sizes sequence (δm)m≥0. We provide in this article a rigorous mathematical framework for analysing this algorithm. We prove that, under verifiable assumptions, the algorithm is consistent, satisfies a central limit theorem (CLT) and its asymptotic bias-variance decomposition can be characterized by an explicit functional of the step-sizes sequence (δm)m≥0. We leverage this analysis to give practical recommendations for the notoriously difficult tuning of this algorithm: it is asymptotically optimal to use a step-size sequence of the type δm m−1/3, leading to an algorithm whose mean squared error (MSE) decreases at rate O(m−1/3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics

Applying standard Markov chain Monte Carlo (MCMC) algorithms to large data sets is computationally expensive. Both the calculation of the acceptance probability and the creation of informed proposals usually require an iteration through the whole data set. The recently proposed stochastic gradient Langevin dynamics (SGLD) method circumvents this problem by generating proposals which are only ba...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization

We present a unified framework to analyze the global convergence of Langevin dynamics based algorithms for nonconvex finite-sum optimization with n component functions. At the core of our analysis is a direct analysis of the ergodicity of the numerical approximations to Langevin dynamics, which leads to faster convergence rates. Specifically, we show that gradient Langevin dynamics (GLD) and st...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015